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This paper provides a systematic literature review, based on the identification, appraisal, selection and
synthesis of publications relating to the effect of incorporating recycled aggregates, sourced from con-
struction and demolition waste, on the shrinkage of concrete. It identifies various influencing aspects
related to the use of recycled aggregates such as replacement level, size and origin, as well as mixing pro-
cedure, curing conditions, and use of chemical admixtures and additions. A comparison between the
shrinkage strain obtained experimentally and that calculated using existing models for predicting shrink-
age is also presented. The results show that all prediction models analyzed in this paper tend to overes-
timate the shrinkage strain of concrete and would benefit from calibration in the form of short-term
testing of an actual concrete to be used in a given project.
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Table 1
Correction factors to calculate shrinkage of RAC (adapted from Task Force of the
Standing Committee of Spain [19]).

Source Shrinkage correction factors

100% Coarse RCA 20% Coarse RCA

Belgium 1.50 1.00
RILEM 1.50 1.00
The Netherlands 1.35–1.55 1.00
1. Introduction

The increasing and unsustainable consumption of natural
resources, along with the excessive production of construction
and demolition wastes (CDW), has been the cause of great concern
for the environment and the economy. In order to reverse this
trend, there have been several efforts to promote the ecological
efficiency in the construction industry, one of them being the reuti-
lization of CDW in new constructions. By doing so, besides decreas-
ing the amount of waste mass sent to landfills and the impacts of
the extraction of natural resources, more value will be added to
these materials, thus opening new market opportunities.

The global market for construction aggregates is expected to
increase 5.2% per year until 2015, up to 48.3 billion tonnes [1]. In
the USA, the Environmental Protection Agency [2] estimated that
the generation of debris, from construction, demolition, and reno-
vation of residential and non-residential buildings in 2003, was
close to 170 million tonnes. According to Eurostat [3], the total
amount of waste generated in the European Union, in 2010, was
over 2.5 billion tonnes, of which almost 860 million tonnes
belonged to construction and demolition activities.

Bearing this in mind, the use of recycled aggregates (RA) as
replacement for natural aggregates (NA) in the production of con-
crete has been considered as one of the most salubrious
approaches for recycling certain materials from CDW and thus con-
tribute to greater sustainability in construction. Indeed, extensive
scientific research and development work on this subject has been
carried out over the last 40 years, some of which has concentrated
on observing how the use of RA might influence the performance of
structural concrete.

The scope of this investigation was to bring together, analyze
and evaluate the published information on the effect of several fac-
tors related to the use of RA on the shrinkage of concrete. A statis-
tical analysis was also performed on the collated shrinkage data
from several studies, in order to comprehend the effect of introduc-
ing an increasing amount of RA on this property. Furthermore,
these values were compared with those calculated using existing
models to predict shrinkage, in order to learn whether these are
sufficiently reliable or modifications are required.

2. Recycled aggregates sourced from construction and
demolition wastes

According to existing specifications [4–19], there are three main
types of RA arising from CDW, which, after being subjected to
proper beneficiation processes in certified recycling plants, are
suitable for the production of structural concrete; these materials
are crushed concrete, crushed masonry, and mixed demolition
debris.

Some of these specifications [8,13,14,16] have reached a con-
sensus that, in order to be considered as recycled concrete aggre-
gate (RCA), they must comprise a minimum of 90%, by mass, of
Portland cement-based fragments and NA.

RA sourced from crushed masonry, or recycled masonry aggre-
gates (RMA), may include: aerated and lightweight concrete
blocks; ceramic bricks; blast-furnace slag bricks and blocks; cera-
mic roofing tiles and shingles; and sand-lime bricks [20]. RMA
are composed of a minimum of 90%, by mass, of the summation
of the aforementioned materials.
Aggregates acquired from mixed demolition debris, or mixed
recycled aggregates (MRA), are a mix of the two main components
obtained from the beneficiation process of CDW: crushed and
graded concrete and masonry rubble. Some specifications [6,14]
state that they are composed of less than 90%, by mass, of Portland
cement-based fragments and NA. In other words, they may contain
several other common CDW materials such as masonry-based
materials.
3. Influencing factors in the shrinkage of recycled aggregate
concrete

The shrinkage of concrete is basically the volume variation of a
certain concrete product caused by the loss of water by evapora-
tion, hydration of cement and also by carbonation [21]. However,
it is a complex phenomenon influenced by many factors, including
the constituents, the temperature and relative humidity of the
environment, the age when concrete is subjected to the drying
environment and the size and shape of the structure or member
[22].

When concrete is exposed to a low relative humidity environ-
ment, the water in the capillaries, which is not physically bound,
evaporates. This process induces internal relative humidity gradi-
ents within the cement paste structure that cause a movement of
the water molecules from the large surface area of the calcium sil-
icate hydrates (CSH) into the empty capillaries and then out of the
concrete. The volume reduction caused by this phenomenon is
known as drying shrinkage [21].

Apart from evaporation, the loss of water is caused by the bin-
der’s hydration reaction process. In the formation of CSH, the trans-
ference of moisture within the concrete causes a capillary
depression mechanism, leading to autogenous shrinkage strain.
This type of shrinkage is more noticeable in concrete with low
water-binder ratio and with great cement content (e.g. high-per-
formance concrete), in which, owing to its lower internal relative
humidity, there is an even greater self-desiccation than in normal
strength concrete [23].

While concrete is still in its plastic state, there may be loss of
water by evaporation from the surface of concrete or by suction
of dry concrete below. This phenomenon causes a volume reduc-
tion on the surface of concrete known as plastic shrinkage, which
is proportional to the rate of evaporation/suction of water, which
in turn depends on the air temperature, relative humidity, wind
speed and concrete’s temperature. The contraction induces tensile
stress in the surface layers because they are restrained by the less-
shrinking inner concrete, thus causing cracking at the surface [21].

The carbonation of concrete results in slightly increased
strength and reduced permeability. In the presence of moisture,



Table 2
Proposed correction factors to determine the shrinkage of RAC.

Shrinkage correction factors

20% Coarse RCA 50% Coarse RCA 100% Coarse RCA

1.20 1.40 1.80
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CO2 forms carbonic acid, which reacts with Ca(OH)2 to produce
CaCO3, which is deposited in the voids in the cement paste. The
decomposition of Ca(OH)2 also releases water to the cement
matrix, which aids the process of hydration. The contraction of
concrete caused by this process is called carbonation shrinkage
[21].

This property must be taken into account when producing mas-
sive concrete elements for structural applications, since they are
more sensitive to deformations, which could compromise the
safety of the structure. Considering the long-term performance of
concrete, greater shrinkage normally means a greater extent of
cracking. Obviously, this will enable the ingress of deleterious
agents into concrete, which may mean the corrosion of steel rein-
forcements of structural concrete [21].

The literature review has shown that recycled aggregate con-
crete (RAC) tends to exhibit greater shrinkage than a corresponding
natural aggregate concrete (NAC), the magnitude of which depends
on several factors related to the use of RA that are discussed in the
following sections. Since the results of the literature do not allow
separating the effect of incorporating RA on each of the shrinkage
processes described above, whenever shrinkage is mentioned in
this paper it refers to total shrinkage of concrete.
3.1. Recycled aggregate replacement

Generally, according to the literature review, as the replace-
ment level increases, the shrink-age of RAC also increases. This
was observed in almost all investigations [19,20,22–97] found in
this subject. In some studies [25,47,84], the introduction of RA at
relatively low replacement levels, specifically up to 30%, produced
RAC with equivalent or negligibly greater shrinkage than the corre-
sponding NAC.

Studies where 100% coarse RCA were incorporated in concrete
have demonstrated a wide range of results, varying from 10% to
100% increase in shrinkage relative to the corresponding NAC
[25,31,40,42,55,65,78,82,90,92,95]. In some publications
[19,20,39,98], average values were established for shrinkage
increase relative to NAC when 100% coarse RCA are used, which
Fig. 1. Influence of increasing coarse RCA contents on the shrinkage of concrete.
may vary from 20% to 50%. For example, the Task Force of the
Standing Committee of Concrete of Spain [19] presented correction
factors, determined in previous specifications, for the use of 20%
and 100% coarse RCA in concrete production (Table 1).

RAC mixes with increasing fine RCA contents may present
equivalent performance to RAC mixes containing similar amounts
of the coarser fraction [28,74]. Although, in some studies [85,97],
the incorporation of fine RA led to shrinkage increase from 80%
to 175%, most cases [29,30,33,74,86] have shown that fine RA
may produce concrete with only 25–55% greater shrinkage than
the corresponding NAC.

Normally, the use of coarse RA is considered a more reliable
approach to produce better quality concrete than when using the
finer fraction of the same material. However, Debieb and Kenai
[78] were able to produce concrete made with 100% fine RMA
exhibiting lower shrinkage strain in comparison to mixes made
with 100% coarse RMA (increases of 40% and 55%, respectively,
compared to that of the control concrete at the age of 91 days).

Concerning the use of both size fractions of RA in concrete, it is
established that this causes an even greater shrinkage strain than
when using coarse RA only [20,28,31,36–38,40,71,73,74]. Still,
the rate at which it increases, when compared to the correspond-
ing NAC, varies greatly according to the literature. In some studies
[20,31], the use of both coarse and fine RCA caused shrinkage
increases ranging from 30% up to 80%. Others [28,36,37,40,74]
found that this figure may vary from 80% to 200%.

Fig. 1 shows the influence of including increasing coarse RCA
contents on the shrinkage of concrete. It plots shrinkage measure-
ments taken from various concrete mixes produced with varying
w/c ratios, cement content and exposed to different environmental
conditions. This figure only considers readings taken at least
90 days after casting since a great deal (40–80%) of the 20-year
shrinkage of concrete occurs in that period [21]. The dashed line
represents the upper limit of a 95% confidence interval. The maxi-
mum relative shrinkage value observed for a RAC made with 100%
coarse RCA, in this sample, was 1.97 times that of the control NAC.
Nevertheless, the upper limit of the confidence interval suggests
that there is a probability of 95% that concrete made with the same
amount of coarse RCA may show shrinkage increases up to 1.8
times that of a corresponding NAC. Based on these results, a new
set of correction factors for different replacement levels of coarse
NA with coarse RCA is proposed in Table 2, which corresponds to
more conservative values than those in the literature [19,57]. The
use of these factors, which should be made in a case-by-case basis
by multiplying the shrinkage strain of the control NAC, would give
the shrinkage strain of a concrete mix with a given replacement
level.
3.2. Mixing procedure

Normally, in conventional concrete, aggregates are placed in the
mixer in a dry state, since their water absorption is generally very
low (normally between 0.5% and 1.5%), and therefore relatively lit-
tle water is required to compensate the water absorbed by the NA
during mixing. Nevertheless, one should be fully aware of the high
water absorption of RCA, due to the old cement mortar adhered to
its surface.



Fig. 2. Shrinkage of concrete made with different quality RCA (adapted from Yang
et al. [83]).
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Hansen [20] suggested that RCA should be introduced in a sat-
urated surface-dry condition. This prevents them from absorbing
the free water that lends workability to the mix. Throughout the
literature review, most researchers have used pre-saturated RCA
thus allowing the production of RAC with similar workability to
that of control mixes.

Leite [99] proposed the use of a simple water compensation
method that can be applied during concrete mixing, as an alterna-
tive to pre-saturating RA 24 h before mixing. Since then, in several
studies [90,92,100–107], this method was used to produce RAC
with minimum strength loss and equivalent workability to that
of the control concrete, regardless of the replacement level. With
the aim of keeping the free water content constant, this method
consists in the use of additional mixing water, which corresponds
to the amount absorbed by RA in a given period. Naturally, the
additional water and time to absorb it depend on the aggregate’s
size and potential absorption capacity.

In one these studies [92], the authors compared the influence of
producing RAC with pre-saturated and water compensated coarse
RCA. It became clear that concrete produced with pre-saturated
RCA exhibited greater shrinkage when compared to mixes made
with water compensated RCA. 90 days after demoulding, concrete
made with 100% coarse pre-saturated RCA exhibited close to 30%
greater shrinkage than that of mixes produced with the same
amount of water compensated coarse RCA.

A slightly different approach for the production of RAC was pro-
posed in other studies [22,108–110], the concept of which is sim-
ilar to the one previously mentioned. Instead of the normal mixing
approach (NMA), in which all components are placed inside the
mixer at the same time, it was proposed dividing it in two stages
(two stage mixing approach – TSMA). Tam and Tam [22] studied
the shrinkage of concrete made with increasing coarse RCA content
produced with the NMA and TSMA. Although test results showed a
considerable improvement in compressive strength (increase
between 10% and 20% for a replacement level of 30%) [108] due
to the use of the TSMA, it did not have a significant effect on the
shrinkage of concrete.

3.3. Recycled aggregates produced using different crushing procedures

Pedro et al. [111] studied in depth the influence of the RAs’
crushing procedure in the properties of RAC. Two types of RCA
were studied; one subjected only to a primary crushing stage,
while the other was subjected to primary plus secondary crushing
stages. The second procedure allowed producing rounder RCA with
less old mortar adhered to its surface. Concrete made with these
aggregates showed strength improvements between 7% and 15%
in comparison to mixes made with RCA subjected only to a primary
crushing stage. This trend was also noticeable in the shrinkage
behavior of concrete. This can be explained by the lower adhered
mortar content, which translates into a stiffer aggregate, in com-
parison to RCA subjected only to a primary crushing stage, and
therefore able to restrain shrinkage of concrete more efficiently.

3.4. Quality of recycled aggregate

There has been some controversy about the influence of the
type of RA on the shrinkage of concrete. Dhir and Paine [62] used
several blends of MRA with varying RCA and RMA content in the
production of concrete. They found that, for a given replacement
level, as the RMA content of that aggregate blend increased, so
did the drying shrinkage. However, in another study [59], in which
the properties of concrete incorporating increasing amounts of
either fine RCA or RMA (25%, 50%, 75% and 100%) were studied,
the outcome was quite the opposite. The results showed that the
drying shrinkage of RAC made with 100% fine RCA was almost
60% greater than that of the control NAC, while it only showed a
10% increase for the same amount of fine RMA. Furthermore, while
studying the effect of the curing method on the autogenous shrink-
age of high performance concrete, Meddah and Sato [23] used pre-
saturated coarse RMA at different replacement levels (20% and
30%). The inclusion of 30% of these aggregates seems to have pro-
vided a significant reduction of the recorded autogenous shrinkage
in the first 7 days.

On the one hand, RCA normally exhibit higher elastic moduli
than RMA and thus are capable of restraining shrinkage of concrete
more efficiently. On the other hand, since RMA normally present a
greater absorption capacity, it is possible that they can provide a
better internal curing and prevent volumetric changes, caused by
water evaporation or self-desiccation.

The quality of the original material plays a vital role on the
mechanical and durability-related performance of concrete. In
the authors’ previous study [112] on the properties and composi-
tion of RA from processed CDW, it was found that the quality of
RA can be indirectly determined in terms of their physical proper-
ties (i.e. water absorption, oven-dried density, resistance to frag-
mentation). This proved to be a more comprehensive method for
characterizing RA, in comparison to a simple classification based
on their composition. Indeed, the authors observed that RA classi-
fied in other references as RCA can exhibit a great variation in
terms of their physical properties, which would greatly affect the
performance of the resulting concrete.

Ajdukiewicz and Kliszczewicz [113] studied the effects of add-
ing coarse and fine RCA, sourced from granitic and basaltic con-
crete, in high strength RAC. This study contains noteworthy
results given the lack of research made on the influence of the nat-
ure of the original aggregate used for producing the control con-
crete. They found that the use of 100% coarse RCA, regardless of
their origin, caused an increase in shrinkage strain between 10%
and 30%. The shrinkage strain varied between 35% and 45% when
both coarse and fine RCA were used. These results suggest that
the type of NA used in the control concrete has marginal influence
on the shrinkage of RAC. Nevertheless, further research is required
to ascertain this.

Yanagibashi et al. [54] studied the influence of adding high
quality coarse RCA on concrete properties. These aggregates were
the output of a new recycling technique for coarse aggregate
regeneration. The results showed that the RAC had a similar perfor-
mance in terms of shrinkage to that of the corresponding NAC. This



Fig. 3. Shrinkage of concrete cured in different environments and with varying
coarse RCA contents.
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effect was also observed by Yang et al. [83], who incorporated RCA
of varying quality in concrete (Fig. 2). Test results showed that the
incorporation of 100% coarse RCA of class A-II, according to the
aforementioned performance-based classification [112], allowed
producing RAC with similar shrinkage strain to that of the control
concrete; however, the incorporation of 100% coarse RCA of class
B-II caused an increase in shrinkage of 30%.

3.5. Different curing conditions

The environment’s relative humidity and temperature are also
determining factors for the drying shrinkage of concrete. Amorim
et al. [90] studied the influence of the environmental conditions
on the durability related performance of concrete with increasing
coarse RCA contents (Fig. 3). As the laboratory environment was
the driest, with an average relative humidity of 60% and tempera-
ture of 20 �C, the specimens being cured in it had a higher shrink-
age strain than those in any other environment. These specimens
showed a clear increase in shrinkage with increasing replacement
levels (60% increase when 100% coarse RCA were used). As the
other environments exhibited higher levels of humidity, the drying
shrinkage of concrete was lower. In these cases, the incorporation
of coarse RCA did not have such a deleterious effect on shrinkage as
it did in specimens cured in a drier environment.

In another study [66], the authors evaluated the shrinkage of
concrete cured in water and in steam, with varying coarse RCA
and fly ash content. The results showed that steam curing was able
to provide greater control on concrete shrinkage than water curing
(average shrinkage reduction of 15% irrespective of replacement
levels and fly ash content).

3.6. Use of water reducing admixtures

Due to the relatively high water absorption and rougher sur-
faces of RA, a greater amount of water is needed to maintain the
same workability as that of an equivalent NAC composition. By
controlling the amount of superplasticizers, it is possible to obtain
concrete with the same total w/c ratio as that of the control NAC
and offset part of the loss of compressive strength from using RA
[114].

An experimental investigation performed by Cartuxo [115]
evaluated the shrinkage of concrete produced with increasing fine
RCA content and superplasticizers with different water-reducing
capacities. Apart from the control NAC and RAC mixes without
any admixtures, two other sets of mixes were made with 1% by
weight of cement of water reducing admixtures; one with a regular
admixture and the other using a high-range water reducing admix-
ture. Every concrete mix had a fixed cement content of 350 kg/m3.
As expected, the incorporation of fine RCA resulted in an increase
of shrinkage in all mixes (100% fine RCA caused shrinkage increases
between 46% and 57%), mostly due to the lower stiffness of this
type of aggregate. The results also showed that the use of the reg-
ular water reducing admixture allowed producing mixes with up
to 4% less shrinkage, while the use of the high range water reduc-
ing admixture decreased shrinkage strain between 14% and 30%.
Overall, it was concluded that the quality and content of aggre-
gates has a greater influence on this property than lowering the
w/c ratio by use of water reducing admixtures. This was also
observed by others [57].
3.7. Use of mineral additions

Several authors [29,65,86] have found that the use of fly ash in
the production of RAC with increasing RCA contents has a similar
shrinkage reducing effect. In one of these studies [29], while incor-
porating 100% fine RCA caused 50% more shrinkage than NAC, after
including fly ash, shrinkage only increased 25%.

Kou et al. [65] observed an average decrease in shrinkage strain
of 55 � 10�6 in all concrete specimens produced with 35% fly ash
(by weight of cement) at the age of 112 days, which corresponds
to 15–20% lower shrinkage strain than mixes without fly ash.

In another study [77], however, the greatest shrinkage strains
occurred in mixes prepared with RA and fly ash. The authors
explained this due to the largest volume of micro pores contained
in the pore structure of this mix, which had higher volume fraction
of paste.

Sagoe-Crentsil et al. [46] used a mixture of Portland cement and
ground granulated blast furnace slag (GGBS) as a binder for the
production of RAC. The authors observed that, when using only
Portland cement as binder, concrete made with 100% coarse RCA
showed 25% greater shrinkage than that of NAC, while the mix
with binder containing GGBS led to a 50% increase in shrinkage.
4. Predicting shrinkage with existing models

In this section, a series of comparisons are made between the
shrinkage strain obtained experimentally and that calculated by
using existing models for shrinkage prediction, in order to ascer-
tain whether these are capable of predicting the shrinkage behav-
ior of RAC or require adjustments to consider the use of RA.

All models to predict shrinkage strain as a function of time have
the same principle: a hyperbolic curve that tends to an asymptotic
value representing the ultimate shrinkage value of concrete. The
shape of the curve and ultimate value depend on several factors,
such as curing conditions, mix design, relative humidity, among
others.

The models selected for comparison are the EC2-08 [116], ACI
209R [117], the Bažant-Baweja B3 [118], the CEB Model Code 99
[119], and the GL2000 [120].

Several shrinkage readings, as well as parameters associated
with each concrete mix, were collected from publications that
studied the effect of using RA on the shrinkage behavior of con-
crete. Table 3 presents the range of experimental data used in each
of these models [121]. With the use of these parameters, it became
possible to compare shrinkage values obtained experimentally
with those calculated using the aforementioned models to predict
shrinkage. Fig. 4 shows this comparison for all concrete mixes,
regardless of the RA size, type and replacement level. Table 4



Table 3
Parameter ranges of each model.

Input variables Model

EC2-08 ACI 209R Bažant-Baweja B3 CEB MC99 GL2000

fcm28 (MPa) 14.7–76.7 16.8–76.7 18–70 16.3–76.7 18–76.7
Cement content (kg/m3) 210–446 280–446 280–446 210–446 300–446
w/c 0.40–1.02 0.40–0.93 0.40–0.84 0.40–1.01 0.40–0.60
Relative humidity (%) 50–100 50–100 50–100 50–100 50–100
Type of cement N or R N or R N or R N or R N or R
Curing time (day) P1 P1 P1 614 614
Sample size 4565 4263 4158 4357 3496

Note: The EC2-08, ACI 209R and CEB MC90-99 models do not predict swelling.
The Bažant-Baweja B3 model is restricted to mixes made with Portland cement.
The GL2000 model does not consider concrete mixes which have experienced self-desiccation.
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shows the statistical indicators for each models used for predicting
shrinkage.

An initial analysis has shown that all models can predict to
some extent the shrinkage behavior of concrete. This can be seen
through the coefficients of correlation (or Pearson’s r), which were
above 0.70 in all cases (Table 4). According to Piaw [122], from a
statistical point of view, having obtained such coefficients means
that there is a strong correlation in the linear dependence between
the measured shrinkage values and those calculated using the
models.

A study [121] was performed on the prediction capabilities of
four of the studied models to predict shrinkage using the RILEM
database [123,124]. It was found that the Bažant-Baweja B3 and
GL2000 models convey the best predictions for the shrinkage
strain and that the CEB-FIP MC99 underestimates the shrinkage
of concrete. However, for the sample considered in this study,
the ACI 209R method was able to provide the best results in terms
of accuracy. From another perspective, instead of choosing the
more precise model, designers may wish to predict the shrinkage
of concrete without testing it and with high confidence that it will
not be exceeded. In that case, the results suggest that the CEB-FIP
MC99 model is the best choice. Indeed, using this model, there is a
probability of 96% that the actual shrinkage strain of concrete will
not exceed that of the calculated value.

The selection of a model to predict the shrinkage behavior of a
given concrete depends on some factors. Firstly, a prediction model
should be accessible for engineers with little specialized knowl-
edge on the fine points of concrete shrinkage. For this reason, the
choice of a prediction model should be based on its simplicity,
required input information and their easy accessibility, as well as
how closely the model represents the physical phenomena [117].

Howells et al. [125] determined that each of the models
assessed in this paper is more sensitive to some parameters than
others, and the most sensitive parameters vary with the model.
When deciding which model to use to predict shrinkage strains,
it is prudent to look at the individual parameters on which each
model is dependent, and assess the sensitivity level of each param-
eter so that the most appropriate model for the specific circum-
stances can be selected. Indeed, the ACI Committee 209 [117]
even suggests that in concrete structures that are sensitive to
shrinkage, regardless of the model used, its accuracy for predicting
shrinkage strain can be improved and their applicable range
expanded if the model is calibrated with short-term testing of
the actual concrete to be used in the project.

Notwithstanding the accuracy of some of the models, the
results presented in Fig. 4 do not allow understanding whether
the use of RA causes a greater deviation between the predicted
results and those of the actual shrinkage data. For this reason,
the information presented in Fig. 4 and Table 4 was further ana-
lyzed and broken down to account for the influence of the increas-
ing amount of RA on the shrinkage of concrete. Tables 5–9 present
the statistical indicators on the use of each model for predicting
shrinkage of concrete with four ranges of replacement levels of
coarse NA with coarse RA, as well as NAC.

As before, the ACI 209R model produced the best results in
terms of precision. In comparison to the other models, ACI 209R
presented the highest coefficients of correlation as well as the low-
est standard errors of the estimate, irrespective of the replacement
level. It was also perceived that the average distance of values to
the line of equality decreased with increasing replacement levels
(Fig. 5), a common feature with the other models. These results
suggest that the existing models have a greater precision in esti-
mating the shrinkage of RAC, while overestimating those of NAC.
This is somewhat counterintuitive considering that these models
were built using shrinkage data from conventional concrete. Since
the existing models were probably based on or calibrated with the
use of RILEM database [123,124], which include shrinkage readings
that go back as far as 1953, it is possible that they were modeled
after concrete materials exhibiting a worse shrinkage behavior
than that of present concrete mixes. Considering that RAC nor-
mally exhibit greater shrinkage than that of corresponding NAC,
it is possible that their shrinkage development over time has a clo-
ser resemblance to the concrete mixes to which the models were
based on.

One of the problems found during this study, which has also
been noticed in other investigations [126,127], is that there is
increasing divergence and spread of data with time as a compari-
son is made between the actual shrinkage data with that of a mod-
el’s prediction. The divergence and spread, which are a measure of
the limitation of a model’s capabilities and variability in the exper-
imental data, can be noticed in all existing models for shrinkage
prediction.

It was noticed that the Bažant-Baweja B3 model is capable of
producing a fairly accurate estimate of the shrinkage behavior of
RAC (Fig. 6). This may be due to the fact that it considers the con-
crete’s modulus of elasticity. Other models appear to disregard the
elastic modulus of concrete and allocate a greater importance to
the quality of the cement paste (the higher the w/c ratio the larger
the shrinkage of concrete), among other parameters. It is possible
that leaving out the modulus of elasticity is not entirely accurate
since concrete can be produced with various types of NA exhibiting
different moduli of elasticity, i.e. granite, basalt, limestone, sand-
stone. It is widely recognized that the aggregates’ stiffness plays
a vital role in restraining the shrinkage of the cement paste and
that the greater the aggregate to cement ratio of a given mix, the
lower the shrinkage of concrete [21]. In the particular case of
RAC, considering that every other criterion remains equal, the
incorporation of increasing amounts of less stiff RA produces con-
crete with lower modulus of elasticity, thus exhibiting greater
shrinkage.



(a) (b)

(c) (d)

(e)

Fig. 4. Comparison between experimental shrinkage values and those calculated using a model for predicting shrinkage: (a) EC2; (b) ACI 209R; (c) Bažant-Baweja B3; (d) CEB-
FIP MC99 and; (e) GL2000.
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Fig. 7 presents the relationship between the relative modulus
of elasticity of various RAC mixes against their shrinkage
increase, sourced from 15 publications [29,42,57,59,67,81,8
3,84,90,107,111,128–131]. Concrete made with fly ash as cement
replacement were not considered in this figure, since the use of
this addition allows controlling the water requirement of the



Table 4
Statistical indicators for each prediction model.

Model EC2 ACI 209R Bažant-Baweja B3 CEB-FIP MC99 GL2000

Sample size 4487 4185 4080 4279 3418
Overestimated prediction (%) 89.2 84.8 83.8 96.3 82.5
R2 0.60 0.66 0.59 0.56 0.55
R 0.77 0.81 0.77 0.75 0.74
Standard error of the estimate (�10�6) 111.1 102.9 107.4 113.7 112.8

Table 5
Statistical indicators of the results calculated using the EC2 model.

Replacement level (%) NAC 0 < RL 6 25 25 < RL 6 50 50 < RL 6 75 75 < RL 6 100

Sample size 787 695 539 38 1105
Overestimated prediction (%) 94.5 92.4 77.9 55.3 89.9
R2 0.62 0.70 0.69 0.61 0.70
R 0.79 0.84 0.83 0.78 0.83
Standard error of the estimate (�10�6) 88.22 80.85 106.73 153.55 105.01

Table 6
Statistical indicators of the results calculated using the ACI 209R model.

Replacement level (%) NAC 0 < RL 6 25 25 < RL 6 50 50 < RL 6 75 75 < RL 6 100

Sample size 687 911 535 39 928
Overestimated prediction (%) 87.9 91.5 77.9 43.6 87.9
R2 0.76 0.75 0.76 0.86 0.80
R 0.87 0.87 0.87 0.93 0.89
Standard error of the estimate (�10�6) 72.50 67.91 94.23 12.02 90.54

Table 7
Statistical indicators of the results calculated using the Bažant-Baweja B3 model.

Replacement level (%) NAC 0 < RL 6 25 25 < RL 6 50 50 < RL 6 75 75 < RL 6 100

Sample size 722 690 535 35 892
Overestimated prediction (%) 80.2 81.9 68.2 62.9 79.0
R2 0.62 0.67 0.55 0.16 0.69
R 0.79 0.82 0.74 0.40 0.83
Standard error of the estimate (�10�6) 87.41 84.70 127.15 209.94 109.54

Table 8
Statistical indicators of the results calculated using the CEB MC99 model.

Replacement level (%) NAC 0 < RL 6 25 25 < RL 6 50 50 < RL 6 75 75 < RL 6 100

Sample size 755 687 532 17 1023
Overestimated prediction (%) 98.1 98.5 93.0 47.1 95.1
R2 0.55 0.66 0.64 0.70 0.61
R 0.74 0.81 0.80 0.84 0.78
Standard error of the estimate (�10�6) 93.20 85.40 115.44 174.91 119.63

Table 9
Statistical indicators of the results calculated using the GL2000 model.

Replacement level (%) NAC 0 < RL 6 25 25 < RL 6 50 50 < RL 6 75 75 < RL 6 100

Sample size 573 684 527 35 700
Overestimated prediction (%) 75.9 81.0 68.7 80.0 79.7
R2 0.60 0.64 0.52 0.02 0.70
R 0.78 0.80 0.72 0.14 0.84
Standard error of the estimate (�10�6) 93.85 87.77 131.48 86.67 112.99
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(a) (b)

Fig. 5. Comparison between experimental shrinkage values and those calculated using the ACI 209R model for: (a) NAC mixes; (b) RAC mixes with 100% coarse RA content.
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mix and thus the shrinkage of concrete for the same moduli of
elasticity. The coefficients of correlation (Pearson’s r) and of
determination (R2) of the linear regression are equal to 0.878
and 0.77, respectively, implying that there is a strong correlation
in the linear dependence between the two variables. By perform-
ing the same analysis in four individual studies (Fig. 8), where
there is a greater control of the different variables related to
the mix design and specimens’ curing procedure, it was observed
that, apart from presenting very strong coefficients of correlation,
they also exhibit similar slopes to each other and to the linear
regression presented in Fig. 7. These results suggest that the
modulus of elasticity of the aggregates and, consequently, that
of concrete have a significant influence on shrinkage. Therefore,
the elastic modulus of concrete is a parameter that should be
considered when estimating the shrinkage of concrete, especially
when considering RAC.
(a) (b)

Fig. 6. Comparison between experimental shrinkage values and those calculated using the Bažant-Baweja B3 model for: (a) NAC mixes; (b) RAC mixes with 100% coarse RA
content.

Fig. 7. Relationship between relative modulus of elasticity and shrinkage increase
of RAC.



(a)

(c) (d)

(b)

Fig. 8. Relationship between relative modulus of elasticity and shrinkage increase of RAC mixes for specific experimental campaigns: (a) Ravindrajarah et al. [28,29]; (b) Yang
et al. [83]; (c) Kou et al. [130]; (d) Pedro et al. [111].
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5. Conclusions

The following conclusions were drawn from studying the vari-
ous factors related to the inclusion of RA on the shrinkage of
concrete:

� The incorporation of increasing amounts of RA leads to higher
shrinkage strain in concrete. This increase in shrinkage seems
to have a linear development as the replacement level
increases. When 100% coarse RCA is introduced in the mix,
RAC may exhibit up to 80% greater shrinkage than the corre-
sponding NAC.
� Although some researchers observed significantly greater

shrinkage in concrete made with fine RA, the literature review
suggests that it is more likely that these mixes exhibit a similar
behavior to concrete made with same replacement level of the
coarser fraction of the same material.
� There is disagreement as to whether RCA or RMA causes greater

shrinkage: on the one hand, RMA normally have a lower elastic
modulus than that of RCA and thus have less restraining capac-
ity to control shrinkage; on the other hand, RMA can generally
absorb a greater amount of water than RCA, which in turn can
provide internal curing and prevent concrete from drying too
rapidly; further research is required in this matter.
� It is possible to control shrinkage of RAC by simply using a dif-

ferent mixing procedure; by using a water compensation
method, shrinkage strain can be reduced by as much as 30%,
when compared to mixes made with pre-saturated RA.
� The use of high quality coarse RCA may produce concrete with

shrinkage strain equivalent to that of corresponding NAC; this
can be achieved by using additional crushing stages in the
RA’s recycling procedure, among other methods, which reduce
the amount of more deformable old adhered mortar and thus
can restrain shrinkage of concrete more efficiently.
� The presence of increasing RCA content in concrete appears to

have a more deleterious effect on shrinkage if RAC is cured in
dry environments. If these materials remain in environments
with high relative humidity, there will be less loss of water
due to evaporation, resulting in equivalent or only slightly
greater shrinkage deformation than that of corresponding NAC.
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� As in conventional concrete, the use of water reducing admix-
tures is capable of controlling the amount of water in RAC and
thus its shrinkage; although the use of these admixtures allows
a similar decrease of shrinkage in RAC and NAC, irrespective of
the replacement level, this property is more efficiently con-
trolled by adjusting the quality and amount of RA in the mix.
� The relative effect on controlling shrinkage brought by the use

of fly ash appears not to have been hindered by presence of
RA; this suggests the use of this addition when producing RAC
may be done in the same manner as for NAC.
� The correction factors proposed in this paper are more conser-

vative and thus capable of predicting with greater confidence
the relative shrinkage increase of concrete with increasing
coarse RCA content than those presented by some of the exist-
ing specifications; this is probably because of the use of small
samples and very controlled RA, which allowed producing con-
crete with lower shrinkage strain, for the same replacement
level.
� The comparison of models with experimental data is compli-

cated by the lack of agreement on the selection of appropriate
data and on the methods used to compare the correlation, mak-
ing the decision of what model to use for predicting shrinkage
even more difficult.
� The elastic modulus of RA has a significant effect on the modu-

lus of elasticity of the resulting concrete and, consequently, on
its shrinkage; except for one, the studied models do not take
into account the modulus of elasticity of concrete when calcu-
lating the shrinkage strain; existing models should be modified
in order to take this parameter into account, especially when
calculating the shrinkage strain of RAC.
� Existing models tend to overestimate concrete’s shrinkage

strain. This was more noticeable for NAC. Nevertheless, all of
the models showed strong correlation between the experimen-
tal values and those calculated, thus implying that these may be
used to accurately predict the shrinkage strain of concrete if the
model is calibrated with short-term testing of the actual con-
crete to be used in the project. However, in cases where the
designer will not consider testing and calibration of the model,
the ACI 209R is the best choice in terms of accuracy and the
CEB-FIP MC99 was able to provide the best results in calculating
the shrinkage strain with the greatest probability that will not
exceeded by that of the actual concrete.
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